Impact of the ocean in-situ observations on the ECMWF seasonal forecasting system

Author:

Balmaseda Magdalena Alonso,Balan Sarojini Beena,Mayer Michael,Tietsche Steffen,Zuo Hao,Vitart Frederic,Stockdale Timothy N.

Abstract

This study aims to evaluate the impact of the in-situ ocean observations on seasonal forecasts. A series of seasonal reforecasts have been conducted for the period 1993-2015, in which different sets of ocean observations were withdrawn in the production of the ocean initial conditions, while maintaining a strong constrain in sea surface temperature (SST). By comparing the different reforecast sets, it is possible to assess the impact on the forecast of ocean and atmospheric variables. Results show that the in-situ observations have profound and significant impacts on the mean state of forecast ocean and atmospheric variables, which can be classified into different categories: i) impact due to local air-sea interaction, as direct consequence of changes in the mixed layer in the ocean initial conditions, and visible in the early stages of the forecasts; ii) changes due to different ocean dynamical balances, most visible in the Equatorial Pacific in forecasts initialized in May, which amplify and evolve with forecast lead time; iii) changes to the atmospheric circulation resulting from changes in large scale SST gradients; these are non-local, mediated by the atmospheric bridge, and they are obvious from the visible impact of the removing in-situ observations on the Atlantic basin only in the global atmospheric circulation; iv) changes in the atmospheric tropical deep convection associated with the structure of the warm pools. The ocean observations have also a significant impact on the representation of the trends of the ocean initial conditions, which affect the trends in the seasonal forecasts of ocean and atmospheric variables. The impact of the ocean observing system in the Atlantic and extratropics appears dominated by Argo, but this is not the case in the Tropical Pacific, where the other ocean observing systems play a role in constraining the ocean state.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3