Effects of Salinity on the Growth, Physiological Characteristics, and Intestinal Microbiota of the Echiura Worm (Urechis unicinctus)

Author:

Zheng Qiaojun,Wang Yunjian,Chen Jiao,Li Yunpeng,Zhao Feng,Liu Danwen,Wei Maokai,Kong Dexu,Chen Zongtao,Zhang Zhifeng,Ma Yubin

Abstract

Intertidal biota is subjected to significant fluctuations in salinity. Urechis unicinctus, a typical species thriving in intertidal sediments, have relatively simple anatomy structure and therefore could be considered as an ideal species for salinity acclimation. Moreover, due to the high nutrients, U. unicinctus has become an emerging aquaculture species in China. In this study, we investigated the effects of salinity on the growth performance, coelomic fluid biochemical indices, antioxidant enzyme system, Na+/K+-ATPase, and non-specific immune enzyme activities, as well as intestinal microbiota composition of this species in an 8-week experiment. The results indicated U. unicinctus is a euryhaline species that can tolerate salinities from 15‰ to 40‰ and demonstrated the highest growth performance at 30‰. Physiological characteristic analyses of coelomic fluid and intestines indicated that the salinity range of 15‰ to 30‰ is more suitable, while 10‰ and 40‰ salinity ranges seem unsuitable for juvenile U. unicinctus. Furthermore, intestinal microbiota analysis indicated salinity had a significant effect on the composition structure. KEGG pathway analysis indicated that antioxidant related metabolic pathways and amino acid metabolic pathways may play important roles in gut microbiota under salinity stress. Comprehensive analysis of intestinal bacteria and enzyme activities indicated Unidentified Rhodobacteraceae, Vibrio, and Shimia may play important roles in high salinity acclimation, while Legionellaceae may act as important microbiota in low salinity acclimation. Moreover, Ruminococcus, Oscillospira, Lachnospiraceae, Clostridiales, and S24-7 showed negative correlations with the antioxidant and nonspecific immune enzymes, indicating that these bacteria can be considered as important candidates of probiotics for U. unicinctus aquaculture industry. The findings of this study will extend our understanding of the effects of salinity on the growth and health of U. unicinctus and contribute to a better understanding of the salinity acclimation strategies of organisms in intertidal zones.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3