Three Distinct Views of Deep Pelagic Community Composition Based on Complementary Sampling Approaches

Author:

Hetherington Elizabeth D.,Choy C. Anela,Thuesen Erik V.,Haddock Steven H. D.

Abstract

Our perception of deep-sea communities has evolved as various sampling approaches have captured different components of deep-sea habitats. We sampled midwater zooplankton assemblages in Monterey Bay, California to quantify community composition (abundance and biomass) and biodiversity (at the Order level) across three depth ranges, and the effects of sampling methodology on community parameters. We collected zooplankton using two types of opening-closing trawls [Tucker Trawl and Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS)] and video recordings from a remotely operated vehicle (ROV). We quantified the relative contributions of microbes to community biomass using synoptic water-bottle casts and flow cytometry. Overall, the pelagic community was most similar between the Tucker trawl and ROV (dissimilarity = 52.4%) and least similar between the MOCNESS and ROV (dissimilarity = 65.8%). Dissimilarity between sampling methods was driven by the relative abundances of crustaceans and gelatinous taxa, where gelatinous animals (cnidarians, ctenophores, tunicates) were more abundant in ROV surveys (64.2%) and Tucker trawls (46.8%) compared to MOCNESS samples (14.5%). ROV surveys were the only method that sufficiently documented the most physically delicate taxa (e.g., physonect siphonophores, lobate ctenophores, and larvaceans). Biomass was also one order of magnitude lower in MOCNESS trawls compared to Tucker trawls. Due to these large differences, the relative contributions of microbes to total biomass were substantially lower in Tucker trawl samples (mean = 7.5%) compared to MOCNESS samples (mean = 51%). These results illustrate that our view of planktonic composition and community biomass is strongly dependent on sampling methodology.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3