Vertical trophic structure and niche partitioning of gelatinous predators in a pelagic food web: Insights from stable isotopes of siphonophores

Author:

Hetherington Elizabeth D.1ORCID,Close Hilary G.2ORCID,Haddock Steven H. D.3,Damian‐Serrano Alejandro45ORCID,Dunn Casey W.4ORCID,Wallsgrove Natalie J.6,Doherty Shannon C.27,Choy C. Anela1ORCID

Affiliation:

1. Integrative Oceanography Division Scripps Institution of Oceanography, University of California San Diego La Jolla California USA

2. University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science Miami Florida USA

3. Monterey Bay Aquarium Research Institute Moss Landing California USA

4. Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA

5. University of Oregon, Institute of Ecology and Evolution Eugene Oregon USA

6. Department of Earth Sciences University of Hawaii Honolulu Hawaii USA

7. University of Alaska Fairbanks, College of Fisheries and Ocean Sciences Fairbanks Alaska USA

Abstract

AbstractGelatinous zooplankton are increasingly recognized as key components of pelagic ecosystems, and there have been many recent insights into their ecology and roles in food webs. To examine the trophic ecology of siphonophores (Cnidaria, Hydrozoa), we used bulk (carbon and nitrogen) and compound‐specific (nitrogen) isotope analysis of individual amino acids (CSIA‐AA). We collected samples of 15 siphonophore genera using blue‐water diving, midwater trawls, and remotely operated vehicles in the California Current Ecosystem, from 0 to 3000 m. We examined the basal resources supporting siphonophore nutrition by comparing their isotope values to those of contemporaneously collected sinking and suspended particles (0–500 m). Stable isotope values provided novel insights into siphonophore trophic ecology, indicating considerable niche overlap between calycophoran and physonect siphonophores. However, there were clear relationships between siphonophore trophic positions and phylogeny, and the highest siphonophore trophic positions were restricted to physonects. Bulk and source amino acid nitrogen isotope (δ15N) values of siphonophores and suspended particles all increased significantly with increasing collection depth. In contrast, siphonophore trophic positions did not increase with increasing collection depth. This suggests that microbially reworked, deep, suspended particles with higher δ15N values than surface particles, likely indirectly support deep‐pelagic siphonophores. Siphonophores feed upon a range of prey, from small crustaceans to fishes, and we show that their measured trophic positions reflect this trophic diversity, spanning 1.5 trophic levels (range 2.4–4.0). Further, we demonstrate that CSIA‐AA can elucidate the feeding ecology of gelatinous zooplankton and distinguish between nutritional resources across vertical habitats. These findings improve our understanding of the functional roles of gelatinous zooplankton and energy flow through pelagic food webs.

Funder

National Science Foundation

David and Lucile Packard Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3