Multiscale attention-based detection of tiny targets in aerial beach images

Author:

Gao Shurun,Liu Chang,Zhang Haimiao,Zhou Zhehai,Qiu Jun

Abstract

Tiny target detection in marine scenes is of practical importance in marine vision applications such as personnel search and rescue, navigation safety, and marine management. In the past few years, methods based on deep convolutional neural networks (CNN) have performed well for targets of common sizes. However, the accurate detection of tiny targets in marine scene images is affected by three difficulties: perspective multiscale, tiny target pixel ratios, and complex backgrounds. We proposed the feature pyramid network model based on multiscale attention to address the problem of tiny target detection in aerial beach images with large field-of-view, which forms the basis for the tiny target recognition and counting. To improve the ability of the tiny targets’ feature extraction, the proposed model focuses on different scales of the images to the target regions based on the multiscale attention enhancement module. To improve the effectiveness of tiny targets’ feature fusion, the pyramid structure is guided by the feature fusion module in order to give further semantic information to the low-level feature maps and prevent the tiny targets from being overwhelmed by the information at the high-level. Experimental results show that the proposed model generally outperforms existing models, improves accuracy by 8.56 percent compared to the baseline model, and achieves significant performance gains on the TinyPerson dataset. The code is publicly available via Github.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3