Abstract
Ship detection is an important but challenging task in the field of computer vision, partially due to the minuscule ship objects in optical remote sensing images and the interference of clouds occlusion and strong waves. Most of the current ship detection methods focus on boosting detection accuracy while they may ignore the detection speed. However, it is also indispensable to increase ship detection speed because it can provide timely ocean rescue and maritime surveillance. To solve the above problems, we propose an improved YOLOv3 (ImYOLOv3) based on attention mechanism, aiming to achieve the best trade-off between detection accuracy and speed. First, to realize high-efficiency ship detection, we adopt the off-the-shelf YOLOv3 as our basic detection framework due to its fast speed. Second, to boost the performance of original YOLOv3 for small ships, we design a novel and lightweight dilated attention module (DAM) to extract discriminative features for ship targets, which can be easily embedded into the basic YOLOv3. The integrated attention mechanism can help our model learn to suppress irrelevant regions while highlighting salient features useful for ship detection task. Furthermore, we introduce a multi-class ship dataset (MSD) and explicitly set supervised subclass according to the scales and moving states of ships. Extensive experiments verify the effectiveness and robustness of ImYOLOv3, and show that our method can accurately detect ships with different scales in different backgrounds, while at a real-time speed.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献