Seasonal and decadal variations in absorption properties of phytoplankton and non-algal particulate matter in three oceanic regimes of the Northwest Atlantic

Author:

Devred Emmanuel,Perry Tim,Massicotte Philippe

Abstract

Seasonal and inter-annual absorption properties of phytoplankton and non-algal particulate matter were studied in relation to phytoplankton biomass, as indexed by chlorophyll-a concentration, and presence of diatoms, as indexed by fucoxanthin concentration, using a 20-year time series of in situ data collected in the Northwest Atlantic. We found significant differences in the spatiotemporal variations of the bio-optical properties for three oceanic regimes: mesotrophic (Scotian Shelf), oligotrophic (Northwest Atlantic Basin, NAB), and subartic (Labrador Sea). The Scotian Shelf and NAB exhibited similar phenology with the spring and autumn blooms associated with low phytoplankton specific absorption, while only relatively high fucoxanthin concentration occurred in spring. The NAB showed a smaller seasonal variation than the Scotian Shelf in agreement with its oceanic conditions. The Labrador Sea showed a single phytoplankton bloom in spring followed by a continuous decrease in biomass the rest of the year. The relationship between phytoplankton absorption coefficient at 443 nm and chlorophyll-a concentration was consistent with other studies with coefficients that were region-dependent. Absorption by non-algal particulate matter remained between 5% and 60% of phytoplankton absorption with a mean of 15%. The slope of the non-algal particulate absorption varied with seasons and regions and appeared to depend on the trophic status with high values (i.e., up to 0.04) occurring during bloom conditions. We also introduced a new index, the phytoplankton apparent absorption wavelength (PAAW), a wavelength-weighted sum of absorption expressed in nanometers that provides information on the phytoplankton biomass and assemblage in a simple manner. Time series analysis of the PAAW revealed a decrease of this property in spring on the Scotian Shelf, NAB, and Labrador Sea and an increase in autumn on the Scotian Shelf and NAB, suggesting a shift in these ecosystems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3