Chlorophyll-Specific Absorption Coefficient of Phytoplankton in World Oceans: Seasonal and Regional Variability

Author:

Wei Jianwei12ORCID,Wang Menghua1ORCID,Mikelsons Karlis12,Jiang Lide13

Affiliation:

1. NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA

2. Global Science and Technology, Inc., Greenbelt, MD 20770, USA

3. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA

Abstract

This study investigates the seasonal and regional variability in the chlorophyll-specific absorption coefficient of phytoplankton at 443 nm (aph*(443); unit: m2 mg−1) in surface oceans. It is focused on the time series data derived from the satellite products of chlorophyll-a (Chl-a) concentration and the phytoplankton absorption coefficient. Global estimates of aph*(443) reveal a decreasing gradient from the open ocean toward the coastal environment, with considerable spatial variance. Seasonal variations are prominent over most oceans, resulting in substantial deviations from the climatological means. A sinusoidal model was fitted to the monthly time series data to characterize the annual and semiannual features. The amplitudes and the phases of the monthly data were latitudinally dependent. The occurrence times of the maximum aph*(443) values were six months out of phase between the northern and southern hemispheres. Satellite observations present a global mean relationship between aph*(443) and Chl-a comparable with those obtained via in situ measurements. However, the seasonal/regional aph*(443) and Chl-a relationships can significantly depart from the global mean relationship. We propose a hypothesis that aph*(443) can be predicted as a function of geolocation and time. Preliminary validations with in situ matchup data confirm that the proposed model is a promising alternative to the traditional approaches requiring Chl-a as the input. The present exploration helps understand the phytoplankton biogeography and facilitates future efforts to improve bio-optical modeling, including estimating the primary production.

Funder

Joint Polar Satellite System (JPSS) program and NOAA Ocean Remote Sensing (ORS) projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3