Toward efficient deep learning system for in-situ plankton image recognition

Author:

Yue Junbai,Chen Zhenshuai,Long Yupu,Cheng Kaichang,Bi Hongsheng,Cheng Xuemin

Abstract

Plankton is critical for the structure and function of marine ecosystems. In the past three decades, various underwater imaging systems have been developed to collect in-situ plankton images and image processing has been a major bottleneck that hinders the deployment of plankton imaging systems. In recent years, deep learning methods have greatly enhanced our ability of processing in-situ plankton images, but high-computational demands and longtime consumption still remain problematic. In this study, we used knowledge distillation as a framework for model compression and improved computing efficiency while maintaining original high accuracy. A novel inter-class similarity distillation algorithm based on feature prototypes was proposed and enabled the student network (small scale) to acquire excellent ability for plankton recognition after being guided by the teacher network (large scale). To identify the suitable teacher network, we compared emerging Transformer neural networks and convolution neural networks (CNNs), and the best performing deep learning model, Swin-B, was selected. Utilizing the proposed knowledge distillation algorithm, the feature extraction ability of Swin-B was transferred to five more lightweight networks, and the results had been evaluated in taxonomic dataset of in-situ plankton images. Subsequently, the chosen lightweight model and the Bilateral–Sobel edge enhancement were tested to process in-situ images with high level of noises captured from coastal waters of Guangdong, China and achieved an overall recall rate of 91.73%. Our work contributes to effective deep learning models and facilitates the deployment of underwater plankton imaging systems by promoting both accuracy and speed in recognition of plankton targets.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference52 articles.

1. The impacts of climate change on plankton as live food: A review;Azani,2021

2. Development of a vertically profiling, high-resolution, digital still camera system;Benfield;Louisiana State Univ. Baton Rouge Dept Oceanogr. Coast. Sci.,2000

3. Medical image denoising using bilateral filter;Bhonsle,2012

4. Deployment of an imaging system to investigate fine-scale spatial distribution of early life stages of the ctenophore Mnemiopsis leidyi in Chesapeake Bay;Bi;J. Plankton Res.,2013

5. A semi-automated image analysis procedure for in situ plankton imaging systems;Bi;PloS One,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3