DeepLOKI- a deep learning based approach to identify zooplankton taxa on high-resolution images from the optical plankton recorder LOKI

Author:

Oldenburg Ellen,Kronberg Raphael M.,Niehoff Barbara,Ebenhöh Oliver,Popa Ovidiu

Abstract

Zooplankton play a crucial role in the ocean’s ecology, as they form a foundational component in the food chain by consuming phytoplankton or other zooplankton, supporting various marine species and influencing nutrient cycling. The vertical distribution of zooplankton in the ocean is patchy, and its relation to hydrographical conditions cannot be fully deciphered using traditional net casts due to the large depth intervals sampled. The Lightframe On-sight Keyspecies Investigation (LOKI) concentrates zooplankton with a net that leads to a flow-through chamber with a camera taking images. These high-resolution images allow for the determination of zooplankton taxa, often even to genus or species level, and, in the case of copepods, developmental stages. Each cruise produces a substantial volume of images, ideally requiring onboard analysis, which presently consumes a significant amount of time and necessitates internet connectivity to access the EcoTaxa Web service. To enhance the analyses, we developed an AI-based software framework named DeepLOKI, utilizing Deep Transfer Learning with a Convolution Neural Network Backbone. Our DeepLOKI can be applied directly on board. We trained and validated the model on pre-labeled images from four cruises, while images from a fifth cruise were used for testing. The best-performing model, utilizing the self-supervised pre-trained ResNet18 Backbone, achieved a notable average classification accuracy of 83.9%, surpassing the regularly and frequently used method EcoTaxa (default) in this field by a factor of two. In summary, we developed a tool for pre-sorting high-resolution black and white zooplankton images with high accuracy, which will simplify and quicken the final annotation process. In addition, we provide a user-friendly graphical interface for the DeepLOKI framework for efficient and concise processes leading up to the classification stage. Moreover, performing latent space analysis on the self-supervised pre-trained ResNet18 Backbone could prove advantageous in identifying anomalies such as deviations in image parameter settings. This, in turn, enhances the quality control of the data. Our methodology remains agnostic to the specific imaging end system used, such as Loki, UVP, or ZooScan, as long as there is a sufficient amount of appropriately labeled data available to enable effective task performance by our algorithms.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference46 articles.

1. A semi-automated image analysis procedure for in situ plankton imaging systems;Bi;PloS One,2015

2. Temporal characteristics of plankton indicators in coastal waters: high-frequency data from planktonscope;Bi;J. Sea Res.,2022

3. Emerging properties in self-supervised vision transformers;Caron,2021

4. A simple framework for contrastive learning of visual representations;Chen,2020

5. Enhanced convolutional neural network for plankton identification and enumeration;Cheng;PloS One,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3