Molecular Markers of Biogenic and Oil-Derived Hydrocarbons in Deep-Sea Sediments Following the Deepwater Horizon Spill

Author:

Romero Isabel C.,Chanton Jeffrey P.,Brooks Gregg R.,Bosman Samantha,Larson Rebekka A.,Harris Austin,Schwing Patrick,Diercks Arne

Abstract

Following the Deepwater Horizon oil spill (DWHOS), the formation of an unexpected and extended sedimentation event of oil-associated marine snow (MOSSFA: Marine Oil Snow Sedimentation and Flocculent Accumulation) demonstrated the importance of biology on the fate of contaminants in the oceans. We used a wide range of compound-specific data (aliphatics, hopanes, steranes, triaromatic steroids, polycyclic aromatics) to chemically characterize the MOSSFA event containing abundant and multiple hydrocarbon sources (e.g., oil residues and phytoplankton). Sediment samples were collected in 2010–2011 (ERMA-NRDA programs: Environmental Response Management Application – Natural Resource Damage Assessment) and 2018 (REDIRECT project: Resuspension, Redistribution and Deposition of Deepwater Horizon recalcitrant hydrocarbons to offshore depocenter) in the northern Gulf of Mexico to assess the role of biogenic and chemical processes on the fate of oil residues in sediments. The chemical data revealed the deposition of the different hydrocarbon mixtures observed in the water column during the DWHOS (e.g., oil slicks, submerged-plumes), defining the chemical signature of MOSSFA relative to where it originated in the water column and its fate in deep-sea sediments. MOSSFA from surface waters covered 90% of the deep-sea area studied and deposited 32% of the total oil residues observed in deep-sea areas after the DWHOS while MOSSFA originated at depth from the submerged plumes covered only 9% of the deep-sea area studied and was responsible for 15% of the total deposition of oil residues. In contrast, MOSSFA originated at depth from the water column covered only 1% of the deep-sea area studied (mostly in close proximity of the DWH wellhead) but was responsible for 53% of the total deposition of oil residues observed after the spill in this area. This study describes, for the first time, a multi-chemical method for the identification of biogenic and oil-derived inputs to deep-sea sediments, critical for improving our understanding of carbon inputs and storage at depth in open ocean systems.

Funder

Gulf of Mexico Research Initiative

National Academies of Sciences, Engineering, and Medicine

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3