Resuspension, Redistribution, and Deposition of Oil-Residues to Offshore Depocenters After the Deepwater Horizon Oil Spill

Author:

Diercks Arne R.,Romero Isabel C.,Larson Rebekka A.,Schwing Patrick,Harris Austin,Bosman Samantha,Chanton Jeffrey P.,Brooks Gregg

Abstract

The focus of this study was to determine the long-term fate of oil-residues from the 2010 Deepwater Horizon (DwH) oil spill due to remobilization, transport, and re-distribution of oil residue contaminated sediments to down-slope depocenters following initial deposition on the seafloor. We characterized hydrocarbon residues, bulk sediment organic matter, ease of resuspension, sedimentology, and accumulation rates to define distribution patterns in a 14,300 km2 area southeast of the DwH wellhead (1,500 to 2,600 m water depth). Oil-residues from the DwH were detected at low concentrations in 62% of the studied sites at specific sediment layers, denoting episodic deposition of oil-residues during 2010–2014 and 2015–2018 periods. DwH oil residues exhibited a spatial distribution pattern that did not correspond with the distribution of the surface oil slick, subsurface plume or original seafloor spatial expression. Three different regions were apparent in the overall study area and distinguished by the episodic nature of sediment accumulation, the ease of sediment resuspension, the timing of oil-residue deposition, carbon content and isotopic composition and foram fracturing extent. These data indicate that resuspension and down-slope redistribution of oil-residues occurred in the years following the DwH event and must be considered in determining the fate of the spilled oil deposited on the seafloor.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3