Quantifying the contribution of temperature, salinity, and climate change to sea level rise in the Pacific Ocean: 2005-2019

Author:

Ran Junlin,Chao Nengfang,Yue Lianzhe,Chen Gang,Wang Zhengtao,Wu Tangting,Li Chengchun

Abstract

In recent decades, Pacific Ocean’s steric sea level anomaly (SSLA) has shown prominent patterns among global sea level variations. With ongoing global warming, the frequency and intensity of climate and sea level changes have increased, particularly in the tropical Pacific region. Therefore, it is crucial to comprehend the overall trends and mechanisms governing volumetric sea level changes in the Pacific. To accurately quantify the spatiotemporal evolution characteristics of density-driven sea level change in the Pacific Ocean (PO) from 2005 to 2019, we decomposed temperature and salinity into linear trends, interannual variations, seasonal variations, and residual terms using the STL (seasonal-trend decomposition based on loess) method. To evaluate the influence of ocean temperature, salinity, and climate change on density-driven sea level change and its underlying mechanisms, we decompose temperature as well as salinity changes through into the Heaving (vertical displacements of isopycnal surfaces) and Spicing (density-compensated temperature and salinity change) modes. The findings reveal an average steric sea level rise rate of 0.34 ± 0.16 mm/yr in the PO from 2005 to 2019. Thermosteric sea-level accounts for 82% of this rise, primarily due to seawater temperature rise at depths of 0-700 m caused by Heaving mode changes. Accelerated SSLA increase via the thermosteric effect has been connected to interactions between greater Ekman downwelling from surface winds, radiation forcing linked to global greenhouse gases, and changes in the Pacific warm currents triggered by El Niño-Southern Oscillation (ENSO) episodes. Although salinity is affected by the Subantarctic Mode Water (SAMW) and the Antarctic Intermediate Water (AAIW) in the southern Indian Ocean, however the significance of salinity in sea level change is little compared to the role played by thermocline shift. This study offers a substantial contribution to the field, providing robust data and technical support, and facilitating a deeper understanding of the mechanisms underlying the effects of temperature and salinity on sea level changes during periods of rapid climate change, thus enhancing the accuracy of future predictions regarding sea level rise.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference73 articles.

1. Sea Level variations at tropical pacific islands since 1950;Becker;Glob. Planet Change,2012

2. Do climate models reproduce the complexity of observed sea level changes;Becker;Geophysical Res. Lett.,2016

3. And McDougall, T Decadal changes along an Indian ocean sec-tion at 328S and their interpretation;Bindoff;J. J. Phys. Oceanogr.,2000

4. Observations: oceanic climate change and sea level;Bindoff;Climate Change 2007: Phys. Sci. basis. Contribution Working Group I,2007

5. Diagnosing climate change and ocean ventilation using hydrographic data;Bindoff;J. Phys. Oceanogr.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3