Air-Sea CO2 Exchange in the Strait of Gibraltar

Author:

Curbelo-Hernández David,Santana-Casiano J. Magdalena,González Aridane González,González-Dávila Melchor

Abstract

The seasonal and spatial variability of the CO2 system and air-sea fluxes were studied in surface waters of the Strait of Gibraltar between February 2019 and March 2021. High-resolution data was collected by a surface ocean observation platform aboard a volunteer observing ship. The CO2 system was strongly influenced by temperature and salinity fluctuations forced by the seasonal and spatial variability in the depth of the Atlantic–Mediterranean Interface layer and by the tidal and wind-induced upwelling. The changes in seawater CO2 fugacity (fCO2,sw) and fluxes were mainly driven by temperature despite the significant influence of non-thermal processes in the southernmost part. The thermal to non-thermal effect ratio (T/B) reached maximum values in the northern section (>1.8) and minimum values in the southern section (<1.30). The fCO2,sw increased with temperature by 9.02 ± 1.99 μatm °C–1 (r2 = 0.86 and ρ = 0.93) and 4.51 ± 1.66 μatm °C–1 (r2 = 0.48 and ρ = 0.69) in the northern and southern sections, respectively. The annual cycle of total inorganic carbon normalized to a constant salinity of 36.7 (NCT) was assessed. Net community production processes described 93.5–95.6% of the total NCT change, while air-sea exchange and horizontal and vertical advection accounted for <4.6%. The fCO2,sw in the Strait of Gibraltar since 1999 has been fitted to an equation with an interannual trend of 2.35 ± 0.06 μatm year–1 and a standard error of estimate of ±12.8 μatm. The seasonality of the air-sea CO2 fluxes reported the behavior as a strong CO2 sink during the cold months and as a weak CO2 source during the warm months. Both the northern and the southern sections acted as a net CO2 sink of −0.82 and −1.01 mol C m–2 year–1, respectively. The calculated average CO2 flux for the entire area was −7.12 Gg CO2 year–1 (−1.94 Gg C year–1).

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3