Seagrass Blue Carbon Stock and Air–Sea CO2 Fluxes in the Karimunjawa Islands, Indonesia during Southeast Monsoon Season

Author:

Latifah Nurul12ORCID,Ningsih Nining Sari3,Kartadikaria Aditya Rakhmat3,Wirasatriya Anindya4ORCID,Febrianto Sigit2,Adi Novi Susetyo5,Hamzah Faisal6ORCID

Affiliation:

1. Doctoral Program in Earth Sciences, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

2. Department of Aquatic Sciences, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang 50275, Indonesia

3. Research Group of Oceanography, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

4. Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang 50275, Indonesia

5. Center for Marine Research, Ministry of Marine Affairs and Fisheries, Jakarta 14430, Indonesia

6. The National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia

Abstract

Research focusing on seagrass ecosystems as carbon storage has been conducted in various Indonesian waters. However, an essential aspect that remains unexplored is the simultaneous analysis of blue carbon storage in seagrass alongside carbon dioxide (CO2) flux values, particularly within Karimunjawa waters. This study aims to assess the organic carbon stock and sea–air CO2 flux in seagrass ecosystems in Karimunjawa. Our hypothesis posits that although seagrass ecosystems release CO2 into the water, their role as blue carbon ecosystems enables them to absorb and accumulate organic carbon within seagrass biomass and sediments. This investigation took place in Karimunjawa waters, encompassing both vegetated (seagrass meadows) and unvegetated (non-seagrass meadows) areas during August 2019, 2020, and 2022. Over this period, the organic carbon stock in seagrass and sediment displayed an increase, rising from 28.90 to 35.70 gCorg m−2 in 2019 and from 37.80 to 45.25 gCorg m−2 in 2022. Notably, the expanse of seagrass meadows in Karimunjawa dwindled by 328.33 ha from 2019 to 2022, resulting in a total carbon stock reduction of the seagrass meadows of 452.39 tC to 218.78 tC. Sediment emerges as a pivotal element in the storage of blue carbon in seagrass, with sedimentary organic carbon outweighing seagrass biomass in storage capacity. The conditions in Karimunjawa, including a high A:B ratio, low dry bulk density, and elevated water content, foster a favorable environment for sediment carbon absorption and storage, facilitated by the waters’ CO2 emission during the southeast monsoon season. Notably, our findings reveal that CO2 release within vegetated areas is lower compared to unvegetated areas. This outcome underscores how seagrass ecosystems can mitigate CO2 release through their adeptness at storing organic carbon within biomass and sediment. However, the presence of inorganic carbon in the form of calcium carbonate introduces a nuanced dynamic. This external source, stemming from allochthonous origins like mangroves, brown algae like Padina pavonica, and calcareous epiphytes, leads to an increase in sedimentary organic carbon stock of 53.2 ± 6.82 gCorg m−2. Moreover, it triggers the release of CO2 into the atmosphere, quantified at 83.4 ± 18.26 mmol CO2 m−2 d−1.

Funder

Indonesian Ministry of Education, Culture, Research, and Technology

Institute for Research and Community Services at Universitas Diponegoro

Universitas Diponegoro

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference88 articles.

1. Seasonal Variation of CO2 and Nutrients in the High-Latitude Oceans: A Comparative Study;Takahashi;Glob. Biogeochem. Cycles,1993

2. Hoegh-Guldberg, O., Danie, J., Michael, T., Marco, B., Sally, B., Ines, C., Arona, D., and Riyanti, D. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, Cambridge University Press.

3. Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., and Petzold, J. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Global Carbon Budget 2020;Friedlingstein;Earth Syst. Sci. Data Discuss.,2020

5. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3