Spatiotemporal distributions of air-sea CO2 flux modulated by windseas in the Southern Indian Ocean

Author:

Sun Huiying,Zheng Kaiwen,Yu Jing,Zheng Hao

Abstract

The Southern Indian Ocean is a major reservoir for rapid carbon exchange with the atmosphere, plays a key role in the world’s carbon cycle. To understand the importance of anthropogenic CO2 uptake in the Southern Indian Ocean, a variety of methods have been used to quantify the magnitude of the CO2 flux between air and sea. The basic approach is based on the bulk formula—the air-sea CO2 flux is commonly calculated by the difference in the CO2 partial pressure between the ocean and the atmosphere, the gas transfer velocity, the surface wind speed, and the CO2 solubility in seawater. However, relying solely on wind speed to measure the gas transfer velocity at the sea surface increases the uncertainty of CO2 flux estimation. Recent studies have shown that the generation and breaking of ocean waves also significantly affect the gas transfer process at the air-sea interface. In this study, we highlight the impact of windseas on the process of air-sea CO2 exchange and address its important role in CO2 uptake in the Southern Indian Ocean. We run the WAVEWATCH III model to simulate surface waves in this region over the period from January 1st 2002 to December 31st 2021. Then, we use the spectral partitioning method to isolate windseas and swells from total wave fields. Finally, we calculate the CO2 flux based on the new semiempirical equation for gas transfer velocity considering only windseas. We found that after considering windseas’ impact, the seasonal mean zonal flux (mmol/m2·d) increased approximately 10%-20% compared with that calculated solely on wind speed in all seasons. Evolution of air-sea net carbon flux (PgC) increased around 5.87%-32.12% in the latest 5 years with the most significant seasonal improvement appeared in summer. Long-term trend analysis also indicated that the CO2 absorption capacity of the whole Southern Indian Ocean gradually increased during the past 20 years. These findings extend the understanding of the roles of the Southern Indian Ocean in the global carbon cycle and are useful for making management policies associated with marine environmental protection and global climatic change mitigation.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3