Spatiotemporal evolution of air-sea CO2 flux in the Northwest Pacific and its response to ENSO

Author:

Shi Haiyi,Chen Ying,Gao Hui

Abstract

Global warming, driven by human activities since the Industrial Revolution, has significantly elevated atmospheric carbon dioxide (CO2) levels, leading to higher global temperatures and a rise in extreme weather events. The ocean, as a major carbon sink, has absorbed about 30% of human-induced carbon emissions, helping mitigate global warming’s impacts. This study examines the spatiotemporal distribution of air-sea CO2 flux in the Northwest Pacific from 1982 to 2021 and its response to El Niño-Southern Oscillation, using Empirical Orthogonal Function and composite analysis. The seasonal patterns of air-sea CO2 flux and the influence of environmental factors were further evaluated. The results show that air-sea CO2 flux in the Northwest Pacific exhibits clear seasonal fluctuations. In winter, high-latitude areas act as significant carbon sources. Strong winds deepen the mixed layer, promoting CO2 release from the ocean into the atmosphere. In contrast, in summer, longer daylight hours, rising SST, and melting sea ice lead to upwelling, which brings nutrients to the surface and stimulates phytoplankton growth. This process turns the region into a carbon sink as phytoplankton growth, driven by intense sunlight, enhances the ocean’s CO2 absorption. The mid-latitude region consistently acts as a carbon sink year-round. During El Niño events, more negative air-sea CO2 flux anomalies appear in the eastern Northwest Pacific, enhancing carbon uptake. La Niña events have the opposite effect in the eastern regions. These findings highlight the Northwest Pacific’s critical role in modulating regional and global carbon cycles under varying climatic conditions. Understanding these dynamics is crucial for improving predictions of future climate impacts and for developing effective strategies to mitigate global warming.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3