Space-time statistics of extreme ocean waves in crossing sea states

Author:

Davison Silvio,Benetazzo Alvise,Barbariol Francesco,Ducrozet Guillaume,Yoo Jeseon,Marani Marco

Abstract

The study of extreme ocean waves has gained considerable interest in recent years, due to their importance for offshore design and navigation safety, and several theoretical approaches have been developed for their statistical description. However, in the case of crossing seas, where two or more wave systems of different characteristics are present, a full understanding of the main physical mechanisms responsible for the occurrence of very high individual waves is still lacking. As a consequence, the prediction of extremes in such conditions currently relies on integrated parameters of the total sea state, such as the spectral wave steepness. In this study, to gain further insight into the role of the crossing wind sea and swell wave systems in producing extreme individual waves, we investigate realistic sea states during typhoon Kong-rey (2018) using an ensemble of numerical simulations obtained from a phase-resolving wave model based on the High-Order Spectral (HOS) method. The reliability of the numerical fields is assessed for the first time with stereo wave measurements of the sea surface elevation field collected from an offshore platform in the area of interest. We show that, in specific conditions, space-time extreme crest heights in crossing seas can be larger than in unimodal seas due to second-order bound wave interactions between the wind sea and the swell. To improve existing prediction capabilities, we propose a novel formulation for the wave steepness in crossing seas, which includes nonlinear effects up to the second order and accounts for the spectral parameters of the interacting wave systems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference97 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of extreme wave fields during Mediterranean tropical-like cyclones;Frontiers in Marine Science;2024-01-08

2. Mechanism 2: crossing waves;Science and Engineering of Freak Waves;2024

3. Prediction 2: long-term prediction of extreme waves;Science and Engineering of Freak Waves;2024

4. Climate analysis of wave systems for multimodal sea states in the Mediterranean Sea;Applied Ocean Research;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3