Modulation Instability and Convergence of the Random-Phase Approximation for Stochastic Sea States

Author:

Athanassoulis AgissilaosORCID,Kyza IreneORCID

Abstract

AbstractThe nonlinear Schrödinger equation is widely used as an approximate model for the evolution in time of the water wave envelope. In the context of simulating ocean waves, initial conditions are typically generated from a measured power spectrum using the random-phase approximation, and periodized on an interval of length L. It is known that most realistic ocean waves power spectra do not exhibit modulation instability, but the most severe ones do; it is thus a natural question to ask whether the periodized random-phase approximation has the correct stability properties. In this work, we specify a random-phase approximation scaling, so that, in the limit of $$L\rightarrow \infty ,$$ L , the stability properties of the periodized problem are identical to those of the continuous power spectrum on the infinite line. Moreover, it is seen through concrete examples that using a too short computational domain can completely suppress the modulation instability.

Publisher

Springer Science and Business Media LLC

Reference58 articles.

1. Alber, I.E.: The Effects of Randomness on the Stability of Two-Dimensional Surface Wavetrains. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, 525–546 (1978)

2. Andrade, D., Stiassnie, M.: New solutions of the C.S.Y. equation reveal increases in freak wave occurrence. Wave Motion 97, 102581 (2020)

3. Athanassoulis, A., Athanassoulis, G., Ptashnyk, M., Sapsis, T.: Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinetic and Related Models 13, 703–737 (2020)

4. Athanassoulis, A., Athanassoulis, G., Sapsis, T.: Localized instabilities of the Wigner equation as a model for the emergence of Rogue Waves, Journal of Ocean Engineering and Marine. Energy 3, 353–372 (2017)

5. Athanassoulis, A., Gramstad, O.: Modelling of Ocean Waves with the Alber Equation: Application to Non-Parametric Spectra and Generalisation to Crossing Seas. Fluids 6, 291 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3