Distribution of Dinoflagellate Cysts in Surface Sediments From the Qingdao Coast, the Yellow Sea, China: The Potential Risk of Harmful Algal Blooms

Author:

Wang Zhaohui,Zhang Yuning,Lei Mingdan,Ji Shuanghui,Chen Jiazhuo,Zheng Hu,Tang Yali,Hu Ren

Abstract

Surface sediments were collected from three sea areas of the Qingdao coast, the Yellow Sea, China, namely, the inner Jiaozhou Bay, the Laoshan coast, and the Amphioxus Reserve area in November to December 2017. Dinoflagellate cysts were observed in the sediments, focusing on the distribution of toxic and harmful species. Contents of biogenic elements were analyzed to reveal their relationships to cysts. A total of 32 cyst taxa were identified, including 23 autotrophic and 9 heterotrophic taxa. Cyst concentrations ranged from 83.3 to 346.5 cysts/g D Wt with an average of 210.7 cysts/g D Wt. Generally, cysts of autotrophic dinoflagellates dominated in sediments from the Qingdao coast with proportions of 41.05%–90.25%. There were no dominant group in cyst assemblages; cysts of Protoperidiniaceae, Suessiales, and Calciodinelloideae showed similar contributions. Cyst assemblages were quite different in the inner Jiaozhou Bay reflected by the lower species richness, diversity, and cyst concentration. Results from the redundancy analysis (RDA) demonstrated the influence of biogenic elements on cyst assemblages, which explained well why the three sea areas with different degrees of human activities showed different dinocyst storages. Notably, 17 harmful algal bloom (HAB) dinoflagellate cysts were identified in this study, including cysts of those producing toxins that may damage human health and marine animals. Some of these cysts occurred widely and dominantly in this study, such as cysts of Gonyaulax spinifera, Azadinium trinitatum, Scrippsiella acuminata, and Biecheleria halophila, suggesting the potential risk of HABs in the Qingdao coastal area.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3