Distribution of Gymnodinium catenatum Graham cysts and its relation to harmful algae blooms in the northern Gulf of California

Author:

Castañeda-Quezada RigelORCID,García-Mendoza ErnestoORCID,Ramírez-Mendoza RafaelORCID,Helenes JavierORCID,Rivas DavidORCID,Romo-Curiel Alfonsina E.ORCID,Lago-Lestón AsunciónORCID

Abstract

Abstract Germination of cysts serves as inoculum for the proliferation of some dinoflagellates, and cyst abundance in sediments represents crucial information to understand and possibly predict Harmful Algae Blooms (HABs). Cyst distribution is related to the physical characteristics of the sediments and the hydrodynamics (circulation) of a particular region. In the northern Gulf of California (nGC) several Gymnodinium catenatum HABs have been recorded. However, the presence of resting cysts and the effect of hydrodynamics on their distribution in the nGC have not been investigated. This study evaluated cyst abundance, distribution and their relation to local circulation in surface sediments during two periods that coincided with a non-bloom year condition (July 2016) and after a major HAB registered in the nGC that occurred in January 2017. Also, a numerical ocean model was implemented to characterize the transport and relocation of cysts and sediments in the region. Gymnodinium catenatum cysts were heterogeneously distributed with some areas of high accumulation (as high as 158 cyst g−1, and 27% of total cyst registered). Cysts seemed to be transported in an eastward direction after deposition and accumulated in an extensive area that probably is the seedbed responsible for the initiation of HABs in the region. The nGC is a retention area of cysts (and sediments) that permit the formation of seedbeds that could be important for G. catenatum HAB development. Our results provide key information to understand G. catenatum ecology and specifically, to understand the geographic and temporal appearance of HABs in the nGC.

Funder

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3