Estimation of fish catch potential using assimilation of synthetic measurements with an individual-based model

Author:

Kelly Cian,Michelsen Finn Are,Alver Morten Omholt

Abstract

A large fraction of costs in wild fisheries are fuel related, and while much of the costs are related to gear used and stock targeted, search for fishing grounds also contributes to fuel costs. Lack of knowledge on the spatial abundance of stocks during the fishing season is a limiting factor for fishing vessels when searching for suitable fishing grounds, and with better planning and routing, costs can be reduced. Strategic and tactical decision-making can be improved through operational decision support tools informed by real-time data and knowledge generated from research. In this article, we present a model-based estimation approach for predicting catch potential of ocean areas. An individual-based model of herring migrations is combined with an estimation approach known as Data Assimilation, which corrects model states using incoming data sources. The data used to correct the model are synthetic measurements generated from neural network output. Input to the neural network was vessel activity data of over 100 fishing vessels from 2015-2018, targeting mainly herring. The output is the predicted normalized density of herring in discrete grid cells. Model predictions are improved through assimilation of synthetic measurements with model states. Characterizing patterns from model output provides novel information on catch potential which can inform fishing activity.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3