Pollen and spore records constrained by millennial prodelta evolution: a case study of the Huanghe (Yellow River) delta

Author:

Hu Weifen,Liu Shihao,Liu Yan,Feng Aiping,Feng Wei,Wang Xiuhang,Chen Shenliang

Abstract

Pollen and spore records in prodeltaic sediments hold significant potential for reconstructing paleoecologic and paleoclimatic evolution. However, uncertainties in these reconstructions arise from millennial-scale prodelta evolution, which dominates stratigraphic development and consequently influences sedimentary processes and/or pollen provenance. Here we explore the intricate relationship between pollen/spore records and prodelta stratigraphic evolution, using established seismic stratigraphy and ten sediment cores (five new, five from literature) within both the proximal and distal (mud belt) parts of the Huanghe (Yellow River) prodelta. In the proximal region, dominant lobate stratigraphic development, accompanied by shifts in river mouth and depocenter, leads to variations in pollen assemblages and contents within individual cores and differences in vertical pollen distribution across core sites. Transport distance appears to be a key factor, with arboreal pollens, particularly saccate ones (e.g., Pinus), positively correlating with the distance from the river mouth in their percentages within a single delta lobe, while non-arboreal and non-saccate arboreal pollens show higher percentages within shorter transport distances, despite longer distances leading to decreased total pollen concentrations. Likely due to the total pollen concentration after extended long-distance transport, this pattern is not observable in the distal mud belt. Subsurface stratigraphy in this mud belt reveals a complex pollen provenance characterized by Artemisia-Ulmus-Chenopodiaceae-Pinus, with non-arboreal pollens in dominance. Therein, non-arboreal pollens are not consistent with deposition from long-distance transport, and Ulmus pollens are uncommon in the western Bohai Sea. Interestingly, surface sediments in the mud belt display a different assemblage, characterized by Pinus-Artemisia-Quercus, consistent with the nearby Luanhe River prodelta, suggesting recent pollen supply from nearby sources, possibly due to the recent abandonment of the mud belt. Additionally, an energetic longshore transport/erosional regime reduces pollen content at the mud-belt margins and create pollen sinks (with the highest concentration) in the mud patch (accumulation area) within the erosion-dominated region adjacent to the mud belt. Our findings confirm that stratigraphic evolution, alongside hydrodynamic conditions and pollen provenance, governs pollen assemblages in deltaic/prodeltaic sediments. They can provide insights for palynological and pollen-based paleoclimatic and paleoecologic studies in other deltas.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3