Stages of palaeoenvironmental evolution, climate and sea level change of the Niger Delta, east Equatorial Atlantic: Novelty from elemental tracers, sedimentary facies and pollen records

Author:

Adojoh Onema C123ORCID,Marret Fabienne3,Duller Robert3,Osterloff Peter L4,Oboh-Ikuenobe Francisca E2,Saylor Beverly Z1

Affiliation:

1. Department of Earth, Environmental and Planetary Sciences, Case Western Reserve University, USA

2. Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, USA

3. School of Environmental Sciences, University of Liverpool, UK

4. Exploration and Production, Shell International, UK

Abstract

This study used the comparative analysis of 3 gravity cores (GCs) obtained from the shallow offshore at ~40 m water depth to reconstruct the morphological evolution of the delta (East Equatorial Atlantic). The focus of this study is on the interpretation of elemental tracers and their justification between these tracers and microfossil data to understand the impact of climate-sea level controls on the evolution of the Niger Delta during the Late Quaternary. Key elemental tracers comprising Ti, Zr, Fe and S were explored to strengthen this concept. High Ti/Zr ratio values down-hole indicate fluvial transport of terrestrial components to the marine setting (20–11.7 ka), whereas high values of Fe/S ratio up-hole provide an extent of inherent marine shale of the Niger Delta (11.7–6.5 ka). In addition, the integrated multiple proxy (mangrove and hinterland pollen, planktonic foraminifera and sedimentary facies) with elemental tracer ratios provided robust and coherent information for delineating the late glacial (MIS2) prograding and interglacial (MIS1) retrograding deltaic transition, respectively. The overall trends of the two elemental tracer ratios (Lower and Mid-upper depths of the GCs) provide a new distinction on the depositional patterns (prograding and retrograding delta) to determine the proximal/upper (clay, silt and very fine sand) and distal offshore/lower shorefaces (coarse-medium sand), and gross palaeoenvironments based on planktonic foraminifera records. These sequential records provide a new clue as evidence of the morphological evolutionary stages (delta plain, delta front and prodelta) of the Niger Delta landscape, gross palaeoenvironments, and vegetation dynamics (pollen data) during two distinct time-bound intervals (20–6.5 ka), which potentially delineate the climate and sea level regime of the coastal offshore.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3