Transport of Microplastics From the Daugava Estuary to the Open Sea

Author:

Frishfelds Vilnis,Murawski Jens,She Jun

Abstract

This study considers the transport of microplastics (MPs) from inland waters (rivers and lakes) to coastal waters and then to the open sea. A three-dimensional MP Eulerian tracer model based on the HIROMB-BOOS model (HBM) with wave-induced transport and biofouling process is used. Multilayer two-way nested model grids with 3–0.5–0.25–0.05 nautical mile resolutions are applied to resolve relevant riverine–estuarial–coastal hydrodynamics with a focus on the southern waters in the Gulf of Riga. The major river of the Gulf of Riga, Daugava, is governed by the Riga Hydro Power Station (RHPS) with high daily and weekly variability of the runoff creating more intense outflows during its working hours. This gives additional complexity when calibrating this model. The model results are validated against MP observations that are collected on various cruises in the summer of 2018 in the Gulf of Riga. There exists a strong synoptic variability in the observations, which are also reproduced. As the rivers are the primary source of MPs, a special backtracking algorithm was developed to find the most possible source of pollutants at a given location and time. The backtracking algorithm includes optimization with respect to salinity in order to prefer trajectories coming from freshwater and, consequently, MP sources. Lagrangian drift studies are performed for events with high precipitation in the estuary domain when sewer overflow at wastewater treatment plants (WWTPs) can occur, and the results are compared with different MP components in observations.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3