Ocean response offshore of Taiwan to super typhoon Nepartak (2016) based on multiple satellite and buoy observations

Author:

Wang Huipeng,Li Jiagen,Song Junqiang,Leng Hongze,Zhang Han,Chen Xuan,Ke Daoxun,Zhao Chengwu

Abstract

Multi-satellite and buoy observation data were used to systematically analyze the ocean response offshore of Taiwan to Super Typhoon Nepartak in 2016. The satellite data showed that a high sea surface temperature combined with a thick warm water layer and deep mixed layer provided a good thermal environment for continuous intensification of the typhoon. Two high-resolution buoys (NTU1 and NTU2) moored 375 and 175 km offshore of southeastern Taiwan were used to clarify the typhoon–ocean interaction as the typhoon approached Taiwan. The ocean conditions were similar at the two buoys before the typhoon, and both buoys were on the left side of the typhoon track and suffered similar typhoon factors (e.g., typhoon intensity and translation speed) during its passage. However, the ocean response differed significantly at the two buoys. During the forced period, the entire upper ocean was cooled at NTU1. In contrast, there was a clear three-layer vertical structure at NTU2 consisting of cool surface and deep layers with a warmer layer between the two cool layers. These responses can be attributed to strong upwelling of a cold eddy at NTU1 and vertical mixing at NTU2. These results indicate that, under similar preexisting conditions and typhoon factors, the movement of ocean eddies under typhoon forcing is an unexpected mechanism that results in upwelling and thus needs to be considered when predicting changes in the ocean environment and typhoon intensity.

Funder

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3