Characterization of Spermidine Synthase (SPDS) Gene and RNA−Seq Based Identification of Spermidine (SPD) and Spermine (SPM) Involvement in Improving High Temperature Stress Tolerance in Gracilariopsis lemaneiformis (Rhodophyta)

Author:

Liu Shixia,Zhang Jun,Sun Xue,Xu Nianjun

Abstract

Gracilariopsis lemaneiformis, an important commercial red macroalga, is facing significant impacts from global warming, which limits algal growth and yield in China. Polyamines (PAs), spermidine (SPD) and spermine (SPM), are ubiquitous polycations important for growth and environmental stress responses including high temperature (HT) tolerance. Spermidine synthase (SPDS) gene is one of the important genes in higher PA biosynthesis, which plays critical roles in HT stress response. Here, we isolated an SPDS gene from G. lemaneiformis and further analyzed its phylogenetic tree, subcellular localization, and gene expression patterns under stress conditions. Meanwhile, supplemented with SPD and SPM were used to study the effects of PAs on HT tolerance in G. lemaneiformis. It showed exogenous 0.5 mM SPD and SPM, respectively, remarkably improved the algal relative growth rate (RGR) compared to those in the CK treatment groups under HT conditions. In addition, they both significantly elevated the activities of antioxidant enzymes and significantly upregulated the expression of genes encoding antioxidant enzymes, triggered transcription factors (TFs) signaling, and improved the expression of genes encoding small heat shock proteins (sHSP20s) during HT stress. Moreover, exogenous PA also enhanced the expression of genes involved in pyruvate metabolism, ascorbate and aldarate metabolism, and nucleotide excision repair in G. lemaneiformis, which helped to maintain better energy supply, redox homeostasis, and genome integrity under HT stress. Taken together, these data provided valuable information for functional characterization of specific gene in endogenous PA synthesis and uncovered the importance of exogenous PAs in promoting algae adaptation to HT stress.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3