Divergent molecular responses of greater amberjack (Seriola dumerili) to acute salinity stress revealed by comparative transcriptome analysis

Author:

Liu Yuqi,Yang Yuchen,Qin Ruotong,Peng Yuhao,Huang Yang,Zhu Chunhua,Li Guangli,Jiang Dongneng,Shi Hongjuan

Abstract

Greater amberjack (Seriola dumerili) is an important commercial fish for its high growth rate and excellent flesh quality. However, its sensitivity to variations of water salinity poses challenges to the cage culture. In this study, the greater amberjack were reared in the optimum salinity (30 ppt, CK) and undesired regimes (10 and 40 ppt) for 72 hours. The molecular adaptive mechanisms to salinity stress were revealed by the comparative transcriptome analysis for the gills and kidneys. In gills, a total of 445 and 423 differentially expressed genes (DEGs) were identified in 10 and 40 ppt salinity stress groups, respectively. Those DEGs were involved in cartilage and skeletal development, ions transport, and immune response. The major ion secretion and osmoregulation transport proteins gene slc12a2/nkcc1 and cftr expression levels were significantly down-regulated at 10 ppt, but slightly activated at 40 ppt, compared with the control group. The expression changes in response to the Na+, K+ movement, and Cl- ion secretion reduced under the hypo-osmotic exposure and ion excretion boost upon hyper-salinity stress. Meanwhile, the cartilage and skeletal development were enhanced in the gills by hypo- or hyper-salinity stimuli, which is critical for maintaining gill structures and improving respiration and osmoregulation under salinity stress. In kidneys, 600 and 539 DEGs were identified in 10 and 40 ppt groups, respectively. Those DEGs were enriched in oxygen transport, pronephros development, regulation of growth, blood coagulation, ion transmembrane transport, and immune response. While the known renal Na+/Cl co-transporter gene slc12a3/ncc expression level was significantly down-regulated at 10 ppt, the organic cation transporter 2 gene slc22a2, ammonium transmembrane transport gene rhd and rhag expression levels were overexpressed under the hyper-salinity condition at 40 ppt, contributing to the salts secretion and ammonium transport regulation, to combat the osmotic influx of salts following the drink of seawater and elevated ammonia production upon high salinity stress. These findings advance our knowledge of adaptative mechanisms to the salinity stress and provide theoretical guidance for the optimal breeding mode for the aquaculture of greater amberjack.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3