Author:
Gottscholl Andreas,Wagenhöfer Maximilian,Klimmer Manuel,Scherbel Selina,Kasper Christian,Baianov Valentin,Astakhov Georgy V.,Dyakonov Vladimir,Sperlich Andreas
Abstract
Masers as telecommunication amplifiers have been known for decades, yet their application is strongly limited due to extreme operating conditions requiring vacuum techniques and cryogenic temperatures. Recently, a new generation of masers has been invented based on optically pumped spin states in pentacene and diamond. In this study, we pave the way for masers based on spin S = 3/2 silicon vacancy (VSi) defects in silicon carbide (SiC) to overcome the microwave generation threshold and discuss the advantages of this highly developed spin hosting material. To achieve population inversion, we optically pump the VSi into their mS = ±1/2 spin sub-states and additionally tune the Zeeman energy splitting by applying an external magnetic field. In this way, the prerequisites for stimulated emission by means of resonant microwaves in the 10 GHz range are fulfilled. On the way to realising a maser, we were able to systematically solve a series of subtasks that improved the underlying relevant physical parameters of the SiC samples. Among others, we investigated the pump efficiency as a function of the optical excitation wavelength and the angle between the magnetic field and the defect symmetry axis in order to boost the population inversion factor, a key figure of merit for the targeted microwave oscillator. Furthermore, we developed a high-Q sapphire microwave resonator (Q ≈ 104–105) with which we find superradiant stimulated microwave emission. In summary, SiC with optimized spin defect density and thus spin relaxation rates is well on its way of becoming a suitable maser gain material with wide-ranging applications.
Funder
Deutsche Forschungsgemeinschaft
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献