Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning

Author:

Sundaresan Vaanathi,Arthofer Christoph,Zamboni Giovanna,Dineen Robert A.,Rothwell Peter M.,Sotiropoulos Stamatios N.,Auer Dorothee P.,Tozer Daniel J.,Markus Hugh S.,Miller Karla L.,Dragonu Iulius,Sprigg Nikola,Alfaro-Almagro Fidel,Jenkinson Mark,Griffanti Ludovica

Abstract

Cerebral microbleeds (CMBs) appear as small, circular, well defined hypointense lesions of a few mm in size on T2*-weighted gradient recalled echo (T2*-GRE) images and appear enhanced on susceptibility weighted images (SWI). Due to their small size, contrast variations and other mimics (e.g., blood vessels), CMBs are highly challenging to detect automatically. In large datasets (e.g., the UK Biobank dataset), exhaustively labelling CMBs manually is difficult and time consuming. Hence it would be useful to preselect candidate CMB subjects in order to focus on those for manual labelling, which is essential for training and testing automated CMB detection tools on these datasets. In this work, we aim to detect CMB candidate subjects from a larger dataset, UK Biobank, using a machine learning-based, computationally light pipeline. For our evaluation, we used 3 different datasets, with different intensity characteristics, acquired with different scanners. They include the UK Biobank dataset and two clinical datasets with different pathological conditions. We developed and evaluated our pipelines on different types of images, consisting of SWI or GRE images. We also used the UK Biobank dataset to compare our approach with alternative CMB preselection methods using non-imaging factors and/or imaging data. Finally, we evaluated the pipeline's generalisability across datasets. Our method provided subject-level detection accuracy > 80% on all the datasets (within-dataset results), and showed good generalisability across datasets, providing a consistent accuracy of over 80%, even when evaluated across different modalities.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Medical Research Council

NIHR Nottingham Biomedical Research Centre

NIHR Oxford Biomedical Research Centre

Wolfson Foundation

British Heart Foundation

Horizon 2020

Health Technology Assessment Programme

National Institute for Health Research

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3