Is it enough to optimize CNN architectures on ImageNet?

Author:

Tuggener Lukas,Schmidhuber Jürgen,Stadelmann Thilo

Abstract

Classification performance based on ImageNet is the de-facto standard metric for CNN development. In this work we challenge the notion that CNN architecture design solely based on ImageNet leads to generally effective convolutional neural network (CNN) architectures that perform well on a diverse set of datasets and application domains. To this end, we investigate and ultimately improve ImageNet as a basis for deriving such architectures. We conduct an extensive empirical study for which we train 500 CNN architectures, sampled from the broad AnyNetX design space, on ImageNet as well as 8 additional well-known image classification benchmark datasets from a diverse array of application domains. We observe that the performances of the architectures are highly dataset dependent. Some datasets even exhibit a negative error correlation with ImageNet across all architectures. We show how to significantly increase these correlations by utilizing ImageNet subsets restricted to fewer classes. These contributions can have a profound impact on the way we design future CNN architectures and help alleviate the tilt we see currently in our community with respect to over-reliance on one dataset.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

HORIZON EUROPE European Research Council

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference50 articles.

1. Automated annotation of coral reef survey images;Beijbom,2012

2. Detnas: backbone search for object detection;Chen,2019

3. Xception: deep learning with depthwise separable convolutions;Chollet,2017

4. Multi-column deep neural networks for image classification;Ciresan,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3