Detecting and classifying defects on the surface of water heaters: Development of an automated system

Author:

Semitela Ângela12ORCID,Ferreira André1,Completo António12,Lau Nuno23,Santos José P12

Affiliation:

1. TEMA – Centre of Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal

2. LASI – Intelligent Systems Associate Laboratory, Guimarães, Portugal

3. IEETA – Institute of Electronics and Informatics Engineering of Aveiro, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal

Abstract

Seeking a total automation of the existing industrial processes, manual product quality control systems have been gradually replaced by automated ones, to significantly improve efficiency and speed, and ultimately, increase industrial productivity. In this regard, an automated inspection system was developed in this work to detect and classify defects on the painted surfaces of Bosch Thermotechnology water heaters. This system comprised a deflectometry-based image acquisition module, two light deep learning models built and trained from scratch for defect detection and classification in the painted surfaces and a visual interface. The experimental results confirmed that: (1) deflectometry techniques were crucial for an accurate defect detection; (2) the two lightweight models – for detection and classification – rapidly achieved high accuracies, even in the testing stage, demonstrating their high performance regardless of their small size; (3) the developed system was able to correctly and quickly predict the status of a painted surface, and then successfully send this status information to a user-friendly visual interface, validating its suitability for an industrial setting. Overall, this system demonstrated great potential as a suitable alternative to the existing manual inspection of the painted surfaces of Bosch Thermotechnology water heaters.

Funder

Fundação para a Ciência e a Tecnologia

Plano de Recuperação e Resiliência under the Next Generation EU from the European Union

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3