Programming Self-Assembled Materials With DNA-Coated Colloids

Author:

Zhang Tianran,Lyu Dengping,Xu Wei,Mu Yijiang,Wang Yufeng

Abstract

Introducing the concept of programmability paves the way for designing complex and intelligent materials, where the materials’ structural information is pre-encoded in the components that build the system. With highly tunable interactions, DNA-coated particles are promising building elements to program materials at the colloidal scale, but several grand challenges have prevented them from assembling into the desired structures and phases. In recent years, the field has seen significant progress in tackling these challenges, which has led to the realization of numerous colloidal structures and dynamics previously inaccessible, including the desirable colloidal diamond structure, that are useful for photonic and various other applications. We review this exciting progress, focusing in detail on how DNA-coated colloids can be designed to have a sophisticatedly tailored surface, shape, patches, as well as controlled kinetics, which are key factors that allow one to program in principle a limitless number of structures. We also share our view on how the field may be directed in future.

Funder

Research Grants Council, University Grants Committee

Croucher Foundation

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3