Cherenkov Radiation–Based Coincidence Time Resolution Measurements in BGO Scintillators

Author:

Gonzalez-Montoro Andrea,Pourashraf Shirin,Cates Joshua W.,Levin Craig S.

Abstract

Bismuth germanate oxide (BGO) scintillators can be re-introduced in time-of-flight positron emission tomography (TOF-PET) by exploiting the Cherenkov luminescence emitted as a result from 511 keV interactions. Accessing the timing information from the relatively few emitted Cherenkov photons is now possible due to the recent improvements in enhanced near-ultraviolet high-density (NUV-HD) silicon photomultiplier (SiPM) technology, fast and low noise readout electronics, and the development of efficient data post-processing methods. In this work, we aim to develop a scalable detector element able to achieve excellent coincidence time resolution (CTR) required for TOF-PET using BGO scintillator elements of various lengths. The proposed detector element is optically coupled to 3.14 × 3.14 mm2 NUV-sensitive SiPMs mounted on a custom design circuit board. In particular, we have evaluated the CTR performance of BGO crystal elements of dimensions 3 × 3 × 3 mm3, 3 × 3 × 5 mm3, 3 × 3 × 10 mm3, and 3 × 3 × 15 mm3, with chemically etched surfaces and wrapped in Teflon tape. To achieve excellent CTR performance, we apply state-of-the-art post-processing methods during data analysis. Best values of 156 ± 6 ps, 188 ± 5 ps, 228 ± 8 ps, and 297 ± 8 ps CTR FWHM have been achieved for the 3, 5, 10, and 15 mm length BGO crystals, respectively. These values improve to 105 ± 6 ps, 127 ± 8 ps, 133 ± 4 ps, and 189 ± 8 ps CTR FWHM, when only considering the Cherenkov component of the timing signal, which is extracted by considering the events with the fastest rise time (20% of the total data). The accurate classification of the events based on their rise time is possible; thanks to the implementation of a dual threshold approach that sets the lower threshold below one light photon equivalent level and the upper one above the signal amplitude of a single photon avalanche diode (SPAD).

Funder

National Institutes of Health

European Social Fund

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference42 articles.

1. Bismuth Germanate as a Potential Scintillation Detector in Positron Cameras;Cho;J Nucl Med,1977

2. Recent Advances and Future Advances in Time-Of-Flight PET;Moses;Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment,2007

3. Highly Improved Operation of Monolithic BGO-PET Blocks;Gonzalez-Montoro;J Inst,2017

4. Electronics Method to advance the Coincidence Time Resolution with Bismuth Germanate;Cates;Phys Med Biol,2019

5. Experimental Time Resolution Limits of Modern SiPMs and TOF-PET Detectors Exploring Different Scintillators and Cherenkov Emission;Gundacker;Phys Med Biol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3