Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission

Author:

Gundacker StefanORCID,Martinez Turtos RosanaORCID,Kratochwil Nicolaus,Pots Rosalinde Hendrika,Paganoni Marco,Lecoq Paul,Auffray Etiennette

Abstract

Abstract Solid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials. The intrinsic SiPM single photon time resolution (SPTR) was measured with Ketek, HPK, FBK, SensL and Broadcom devices. Also, the best achieved coincidence time resolution (CTR) for these devices was measured with LSO:Ce:Ca of mm3 and mm3 size crystals. The intrinsic SPTR for all devices ranges between 70 ps and 135 ps FWHM when illuminating the entire mm2 or mm2 area. The obtained CTR with LSO:Ce:Ca of mm3 size ranges between 58 ps and 76 ps FWHM for the SiPMs evaluated. Bismuth Germanate (BGO), read out with state of-the-art NUV-HD SiPMs from FBK, achieved a CTR of 158 ps and 277 ps FWHM for mm3 and mm3 crystals, respectively. Other BGO geometries yielded 167 3 ps FWHM for mm3 and 235 5 ps FWHM for mm3 also coupled with Meltmount (n  =  1.582) and wrapped in Teflon. Additionally, the average number of Cherenkov photons produced by BGO in each 511 keV event was measured to be 17 3 photons. Based on this measurement, we predict the limits of BGO for ultrafast timing in TOF-PET with Monte Carlo simulations. Plastic scintillators (BC422, BC418), BaF2, GAGG:Ce codoped with Mg and CsI:undoped were also tested for TOF performance. Indeed, BC422 can achieve a CTR of 35 2 ps FWHM using only Compton interactions in the detector with a maximum deposited energy of 340 keV. BaF2 with its fast cross-luminescence enables a CTR of 51 5 ps FWHM when coupled to VUV-HD SiPMs from FBK, with only  ∼22% photon detection efficiency (PDE). We summarize the measured CTR of the various scintillators and discuss their intrinsic timing performance.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3