Design and investigation of small-scale long-distance RF energy harvesting system for wireless charging using CNN, LSTM, and reinforcement learning

Author:

Zhang Hao,Wang Yue,Park Hyeong Kwang Benno,Sung Tae Hyun

Abstract

Introduction: The energy supply challenge in wireless charging applications is currently a significant research problem. To address this issue, this study introduces a novel small-scale long-distance radio frequency (RF) energy harvesting system that utilizes a hybrid model incorporating CNN, LSTM, and reinforcement learning. This research aims to improve RF energy harvesting and wireless charging efficiency.Method: The methodology of this study involves data collection, data processing, model training and evaluation, and integration of reinforcement learning algorithms. Firstly, RF signal data at different distances are collected and rigorously processed to create training and testing datasets. Next, the CNN-LSTM model is trained using the prepared data, and model performance is enhanced by adjusting hyperparameters. During the evaluation phase, specialized test data is used to assess the accuracy of the model in predicting RF energy harvesting and wireless charging efficiency. Finally, reinforcement learning algorithms are integrated, and a reward function is defined to incentivize efficient wireless charging and maximize energy harvesting, allowing the system to dynamically adjust its strategy in real time.Results: Experimental validation demonstrates that the optimized CNN-LSTM model exhibits high accuracy in predicting RF energy harvesting and wireless charging efficiency. Through the integration of reinforcement learning algorithms, the system can dynamically adjust its strategy in real time, maximizing energy harvesting efficiency and charging effectiveness. These results indicate significant progress in long-distance RF energy harvesting and wireless charging with this system.Discussion: The results of this study validate the outstanding performance of the small-scale long-distance RF energy harvesting system. This system is not only applicable to current wireless charging applications but also demonstrates potential in other wireless charging domains. Particularly, it holds significant prospects in providing energy support for wearable devices, Internet of Things (IoT), and mobile devices.

Publisher

Frontiers Media SA

Reference35 articles.

1. Recent advances in convolutional neural networks;Gu;Pattern recognition,2018

2. Long short-term memory-networks for machine reading ChengJ DongL LapataM. 2016

3. Reinforcement learning: a survey;Pack Kaelbling;J Artif intelligence Res,1996

4. Autoencoders;Bank,2023

5. Support vector machines;Hearst;IEEE Intell Syst their Appl,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3