Two-dimensional Cr-based ferromagnetic semiconductor: Theoretical simulations and design

Author:

Tu Yufei,Liu Qingquan,Hou Lipeng,Shi Puyuan,Jia Chaobin,Su Jingjuan,Zhang Jiawen,Zhang Xiuyun,Wang Bing

Abstract

Two-dimensional (2D) material is the promising for next-generation information technology. The recently discovered intrinsic magnetic crystals have simulated a renaissance in 2D spintronics, which provides an ideal platform for exploring novel physical phenomena. However, current experimental trial-and-error methods in discovering new spintronic material are still very expensive and challenging. In contrast, based on well-developed first-principles calculations, computationally designing the spintronic materials provides a more efficient way for exploring new ferromagnetic (FM) materials and understanding the nature of magnetic properties. Several predictions, such as CrI3 monolayer, CrGeTe3 bilayer, CrSBr monolayer, FeCl2 monolayer, and Fe3GeTe2 monolayer have been confirmed by experiments, showing the great performance of computational approaches. This minireview article attempts to give a brief of discovering intrinsic 2D spintronics from theoretical aspect, and in particular, we emphasize roles played by calculation based on first-principles methods in designing 2D FM materials and devices. The current challenges and proposals on future developments of 2D spintronics are also discussed.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3