Analysis of Emission Infrared Spectra of Protein Solutions in Low Concentrations

Author:

Penkov Nikita,Penkova Nadezda

Abstract

In this work, based on the method of infrared emission spectroscopy, the study of emission spectra of interferon-gamma (IFNγ) solution in a mixture or surrounded by three low-concentration solutions (IFNγ, antibodies to IFNγ, glycine buffer) or water control was performed. First of all, the solutions of low concentrations themselves were studied. It was shown that low-concentration solutions of IFNγ and antibodies to IFNγ had lower emission intensity in three spectral bands near 800, 1,300 and 2000 cm−1 compared to water control. Glycine buffer solution had a radiation level indistinguishable from that of the control. In this work, the effect of adding these low-concentration solutions to IFNγ (1 mg/ml) was compared to the effect of adding water control to IFNγ. All solutions or water were added in 10% (v/v). It was found that adding each of the three test solutions induced an increase in the radiation intensity of the IFNγ solution in the spectral range of 400–1700 cm−1 (compared to the IFNγ solution with control spike). It was also tested whether the radiation of the studied low-concentration solutions surrounding the IFNγ solution (1 mg/ml) affected the IFNγ radiation. The measurement results were compared to the data obtained for IFNγ surrounded by water control. All three solutions were found to exert a distant effect on the IFNγ solution (1 mg/ml), which was manifested in a decrease in the intensity of its radiation near 1,000 and 1,500 cm−1 compared to the control solution of IFNγ. Thus, the emission spectra of low-concentration aqueous solutions were measured for the first time, and differences in the emission spectra of the IFNγ solution depending on low-concentration additives and the environment were shown. The paper interprets the observed differences and discusses possible mechanisms underlying the observed phenomena.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3