Phenomenon of Post-Vibration Interactions

Author:

Petrova Anastasia1,Tarasov Sergey1,Gorbunov Evgeniy1,Stepanov German1,Fartushnaya Olga1,Zubkov Evgenii1ORCID,Molodtsova Irina1ORCID,Boriskin Vladimir1,Zatykina Anastasia1,Smirnov Alexey1,Zakharova Svetlana1,Yaroshenko Sabina1,Ponomareva Anna1,Petrova Nataliya1,Kardash Elena1,Ganina Ksenia1ORCID,Rodionova Natalia1ORCID,Kovalchuk Alexander1,Epstein Oleg1ORCID

Affiliation:

1. OOO “NPF “MATERIA MEDICA HOLDING”, 47-1 Trifonovskaya Str., Moscow 129272, Russia

Abstract

During the preparation of high dilutions, repeated external vibration (shaking) is used. We hypothesized that it was the vibration treatment, and not the negligible content of the initial substance, that underlies the activity of highly diluted preparations. In order to test this, the vibration was separated from the dilution process. After vibrating two tubes together on a vortex mixer (one containing water and the other the initial substance) the electrical conductivity and radio frequency radiation intensity of water differed from the unvibrated control, and the ability to exert a modifying effect on the target solution appeared, as assessed using ELISA and terahertz spectroscopy, appeared. Thus, the properties of the neutral carrier (water) changed after non-contact exposure to the initial substance. We have named this process ‘crossing’ and its products ‘aqueous iterations of the initial substance’. Several aqueous iterations with different physical properties were obtained, some of which have a modifying effect and others cause various chemical (catalytic) and biological (antiviral) effects similar to those of the initial substance. This indicates that during crossing, substances enter into post-vibration supramolecular interactions. At the nanoscale level, aqueous iterations and the initial substance are structurally symmetrical, which allows us to assume that the preservation of the symmetry of substances subjected to vibration treatment is the basis of the post-vibration interaction phenomenon.

Funder

OOO “NPF “MATERIA MEDICA HOLDING”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3