Effects from dayside magnetosphere to distant tail unleashed by a bifurcated, non-reconnecting interplanetary current sheet

Author:

Farrugia C. J.,Lugaz N.,Wing S.,Wilson L. B.,Sibeck D. J.,Cowley S. W. H.,Torbert R. B.,Vasquez B. J.,Berchem J.

Abstract

Global magnetospheric effects resulting from the passage at Earth of large-scale structures have been well studied. The effects of common and short-term features, such as discontinuities and current sheets (CSs), have not been studied in the same depth. Herein we show how a seemingly unremarkable interplanetary feature can cause widespread effects in the magnetosheath-magnetosphere system. The feature was observed by Advanced Composition Explorer inside an interplanetary coronal mass ejection on 10 January 2004. It contained 1) a magnetic field dip bounded by directional discontinuities in field and flows, occurring together with 2) a density peak in what we identify as a bifurcated, non-reconnecting current sheet. Data from an array of spacecraft in key regions of the magnetosheath/magnetosphere (Geotail, Cluster, Polar, and Defense Meteorological Satellite Program) provide context for Wind’s observations of flapping of the distant (R ∼ −226 RE) magnetotail. In particular, just before the flapping began, Wind observed a hot and tenuous plasma in a magnetic field structure with enhanced field strength, with the By and Bz components rotating in a fast tailward flow burst. Closer inspection reveals a large flux rope (plasmoid) containing lobe plasma in a tail strongly deflected and twisted by interplanetary non-radial flows and magnetic field By. We try to identify the origin of this ‘precursor to flapping’ by looking at data from the various spacecraft. Working back towards the dayside, we discover a chain of effects which we argue were set in motion by the interplanetary CS and its interaction with the bow shock. These effects include 1) a compression and dilation of the magnetosphere, 2) a local deformation of the postnoon magnetopause, and, 3) at the poleward edge of the oval in an otherwise quiet polar cap flow, a strong (3 km/s) sunward flow burst in a double vortex-like structure flanked by two sets of field-aligned currents. Clearly, an intertwined set of phenomena was occurring at the same time. We learn that multi-spacecraft analysis can give us great insight into the magnetospheric response to transient changes in the solar wind.

Funder

University of New Hampshire

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3