Affiliation:
1. Applied Physics Laboratory The Johns Hopkins University Laurel MD USA
2. Department of Physics and Astronomy University of California Los Angeles Los Angeles CA USA
3. European Space Agency/ESTEC Noordwijk The Netherlands
4. Space Science Center University of New Hampshire Durham NH USA
Abstract
AbstractNumerous questions remain about how solar wind directional discontinuities, for example, rotational discontinuities (RDs), affect energy and transport processes at the magnetopause. The impact on the dayside magnetosphere of a solar wind RD is studied. The study shows that the RD leads to complex structures at the magnetopause, boundary layer, mantle, and cusp even though the geomagnetic activity level remains low. At low altitudes, the Defense Meteorological Satellite Program spacecraft observe a double cusp that is a signature of magnetic reconnection occurring at both high and low latitudes due to the dominant IMF By, while Cluster C2, located at high‐latitude and high‐altitude in the southern hemisphere, observes velocity fluctuations and reversals with peak‐to‐peak amplitudes >800 km s−1 as it crosses the magnetopause. A global MHD simulation of the event shows that the C2 observations are consistent with the spacecraft crossing reconnection outflows while moving from one side of the X‐line to the other.
Funder
Heliophysics Division
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献