Spectral shapes of second-forbidden single-transition nonunique β decays assessed using the nuclear shell model

Author:

Ramalho Marlom,Suhonen Jouni,Neacsu Andrei,Stoica Sabin

Abstract

Experimental and theoretical studies of β electrons (electrons emitted in β-decay transitions) and their β-electron spectra have recently experienced a rapid expansion. These β spectral shapes have been used to study total β spectra of fission-product nuclei in the quest for explanation of the reactor-flux anomalies, and individual β transitions in search for β spectral shapes sensitive to the effective value of the weak axial coupling gA. In the former case the TAGS (total absorption gamma-ray spectroscopy) can be efficiently used to measure the total β spectral shapes and in the latter case dedicated measurements of the involved forbidden nonunique β transitions have been deployed. The fourth-forbidden nonunique decay transitions 113Cd(1/2g.s.+)113In(9/2g.s.+) and 115In(9/2g.s.+)115Sn(1/2g.s.+) represent theoretically and experimentally much-studied cases where the total β spectra consist of these single transitions. In these particular cases the TAGS method could be used to assess the effective value of gA. In the present work we have identified five more interesting cases where a total β spectrum consists of a single transition. These spectra correspond to second-forbidden nonunique transitions and are gA and/or sNME dependent, where sNME denotes the so-called small relativistic vector nuclear matrix element. These studies have been performed using the nuclear shell model with well established effective Hamiltonians. With this we target to β transitions that would potentially be of high interest for the TAGS and present and future dedicated β-spectrum experiments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3