Wellbore multiphase flow behaviors of gas kick in deep water horizontal drilling

Author:

Wang Xiansi,Huang Lianlu,Li Xiangpeng,Bi Shaokun,Li Hua,Zhang Jianbo,Sun Xiaohui

Abstract

During the deepwater drilling, the complicated gas-liquid-solid multiphase flow will occur if the formation gas enters and migrates in the wellbore. Through understanding of the wellbore flow behaviors is of great importance for the blowout prevention and well control. Considering the dynamic mass and heat transfer process in wellbore caused by alternating ambient temperature field, a multiphase flow model of multicomponent fluid in wellbore is deduced and developed, including the continuity equation, momentum conservation equation and energy conservation equation. Furthermore, the corresponding initial and boundary conditions are proposed for different working conditions in deepwater drilling, and an efficient numerical solution method is established, including dynamic mesh generation method and discrete solution method of partial differential equations. Applied in a deep-water kicking well, the proposed model is used to analyze the multiphase flow rules in the wellbore. The results show that in the process of annular fluid returning from the bottomhole, the pressure generally decreases linearly, while the temperature change is nonlinear. The temperature first rises and then falls at the formation section, and first falls and then rises at the seawater section. Furthermore, the pit gain increases approximately in a quadratic polynomial relationship, caused by the rise and expansion of gas in the wellbore, and the pressure drop and gas influx rate increase at the bottomhole. In the process of kick evolution, the standpipe pressure and bottomhole pressure gradually decrease, which can be an important sign for kick detection.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference30 articles.

1. Promoting ecological sustainability and community resilience in the US Gulf Coast after the 2010 Deepwater Horizon oil spill;Levy;J Nat Resour Pol Res,2010

2. Impacts, perception, and policy implications of the Deepwater Horizon oil and gas disaster;Norse;Envtl L Rep News Anal,2010

3. A mathematical model of a gas kick;Leblanc;J Pet Technology,1968

4. Mud system and well control;Records;Pet Eng,1972

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3