The productivity segmented calculation model of perforated horizontal wells considering whether to penetrate the contaminated zone

Author:

Zhang Shuangshuang,Guo Kangliang,Yang Haoran,Gao Xinchen

Abstract

Perforation technology is often used to improve the productivity of horizontal wells in oilfield exploitation. During the perforation process, the formation seepage mode and productivity will change accordingly whether the contaminated zone is shot through. If we continue to use the previous productivity formula, it will cause a large calculation error and bring economic loss to the development of oil and gas fields. Firstly, based on the principle of equivalent seepage resistance, the reservoir-hole inflow profile in these two cases is analyzed in detail, and the reservoir-hole seepage model is constructed in different regions. The perforated horizontal well section is divided into N micro-unit sections, and the pressure drop model in the wellbore is constructed using the fluid mechanics theory. A new perforated horizontal well productivity prediction model is then created by coupling the reservoir-hole seepage model with the pressure drop model in the wellbore as a whole to accurately reflect the production performance of the perforated horizontal well. Through comparison and verification, it is concluded that the calculation results of the model are more precise, which can greatly reduce the productivity error. This method is reasonable and practical. When the oilfield’s actual well data is substituted into this model, it is discussed and analyzed that the reservoir’s physical characteristics, contamination level, and perforation completion parameters all have an impact on the productivity of horizontal wells, with the original formation’s permeability and reservoir contamination thickness having the most pronounced effects. These findings may effectively direct the design of technological processes and performance impact prediction.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Laboratory flow characteristics of gun perforations;Bell;J. Petroleum Technol.,1972

2. The impact of formation damage and completion impairment on horizontal well productivity;Burton,1998

3. SCALING CRITERIA AND MODEL EXPERIEMENTS FOR HORIZONTAL WELLS;Doan,1990

4. The reservoir engineering aspects of horizontal drilling;Giger,1984

5. The effect of perforating oil well productivity;Harris;J. PETROLEUM Technol.,1966

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3