Language Models Explain Word Reading Times Better Than Empirical Predictability

Author:

Hofmann Markus J.,Remus Steffen,Biemann Chris,Radach Ralph,Kuchinke Lars

Abstract

Though there is a strong consensus that word length and frequency are the most important single-word features determining visual-orthographic access to the mental lexicon, there is less agreement as how to best capture syntactic and semantic factors. The traditional approach in cognitive reading research assumes that word predictability from sentence context is best captured by cloze completion probability (CCP) derived from human performance data. We review recent research suggesting that probabilistic language models provide deeper explanations for syntactic and semantic effects than CCP. Then we compare CCP with three probabilistic language models for predicting word viewing times in an English and a German eye tracking sample: (1) Symbolic n-gram models consolidate syntactic and semantic short-range relations by computing the probability of a word to occur, given two preceding words. (2) Topic models rely on subsymbolic representations to capture long-range semantic similarity by word co-occurrence counts in documents. (3) In recurrent neural networks (RNNs), the subsymbolic units are trained to predict the next word, given all preceding words in the sentences. To examine lexical retrieval, these models were used to predict single fixation durations and gaze durations to capture rapidly successful and standard lexical access, and total viewing time to capture late semantic integration. The linear item-level analyses showed greater correlations of all language models with all eye-movement measures than CCP. Then we examined non-linear relations between the different types of predictability and the reading times using generalized additive models. N-gram and RNN probabilities of the present word more consistently predicted reading performance compared with topic models or CCP. For the effects of last-word probability on current-word viewing times, we obtained the best results with n-gram models. Such count-based models seem to best capture short-range access that is still underway when the eyes move on to the subsequent word. The prediction-trained RNN models, in contrast, better predicted early preprocessing of the next word. In sum, our results demonstrate that the different language models account for differential cognitive processes during reading. We discuss these algorithmically concrete blueprints of lexical consolidation as theoretically deep explanations for human reading.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Reference84 articles.

1. Modeling lexical decision: The form of frequency and diversity effects;Adelman;Psychol. Rev.,2008

2. Eye movements do not reflect retrieval processes: limits of the eye-mind hypothesis;Anderson;Psychol. Sci.,2004

3. Demythologizing the word frequency effect: a discriminative learning perspective;Baayen;Ment. Lex.,2010

4. Mixed-effects modeling with crossed random effects for subjects and items;Baayen;J. Mem. Lang.,2008

5. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors,;Baroni,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3