Language Models Outperform Cloze Predictability in a Cognitive Model of Reading

Author:

Rego Adrielli LopesORCID,Snell Joshua,Meeter Martijn

Abstract

AbstractAlthough word predictability is commonly considered an important factor in reading, sophisticated accounts of predictability in theories of reading are yet lacking. Computational models of reading traditionally use cloze norming as a proxy of word predictability, but what cloze norms precisely capture remains unclear. This study investigates whether large language models (LLMs) can fill this gap. Contextual predictions are implemented via a novel parallel-graded mechanism, where all predicted words at a given position are pre-activated as a function of contextual certainty, which varies dynamically as text processing unfolds. Through reading simulations with OB1-reader, a cognitive model of word recognition and eye-movement control in reading, we compare the model’s fit to eye-movement data when using predictability values derived from a cloze task against those derived from LLMs (GPT2 and LLaMA). Root Mean Square Error between simulated and human eye movements indicates that LLM predictability provides a better fit than Cloze. This is the first study to use LLMs to augment a cognitive model of reading with higher-order language processing while proposing a mechanism on the interplay between word predictability and eye movements.Author SummaryReading comprehension is a crucial skill that is highly predictive of later success in education. One aspect of efficient reading is our ability to predict what is coming next in the text based on the current context. Although we know predictions take place during reading, the mechanism through which contextual facilitation affects ocolarmotor behaviour in reading is not yet well-understood. Here, we model this mechanism and test different measures of predictability (computational vs. empirical) by simulating eye movements with a cognitive model of reading. Our results suggest that, when implemented with our novel mechanism, a computational measure of predictability provide better fits to eye movements in reading than a traditional empirical measure. With this model, we scrutinize how predictions about upcoming input affects eye movements in reading, and how computational approches to measuring predictability may support theory testing. In the short term, modelling aspects of reading comprehension helps reconnect theory building and experimentation in reading research. In the longer term, more understanding of reading comprehension may help improve reading pedagogies, diagnoses and treatments.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3