Smart grading of diabetic retinopathy: an intelligent recommendation-based fine-tuned EfficientNetB0 framework

Author:

Anand Vatsala,Koundal Deepika,Alghamdi Wael Y.,Alsharbi Bayan M.

Abstract

Diabetic retinopathy is a condition that affects the retina and causes vision loss due to blood vessel destruction. The retina is the layer of the eye responsible for visual processing and nerve signaling. Diabetic retinopathy causes vision loss, floaters, and sometimes blindness; however, it often shows no warning signals in the early stages. Deep learning-based techniques have emerged as viable options for automated illness classification as large-scale medical imaging datasets have become more widely available. To adapt to medical image analysis tasks, transfer learning makes use of pre-trained models to extract high-level characteristics from natural images. In this research, an intelligent recommendation-based fine-tuned EfficientNetB0 model has been proposed for quick and precise assessment for the diagnosis of diabetic retinopathy from fundus images, which will help ophthalmologists in early diagnosis and detection. The proposed EfficientNetB0 model is compared with three transfer learning-based models, namely, ResNet152, VGG16, and DenseNet169. The experimental work is carried out using publicly available datasets from Kaggle consisting of 3,200 fundus images. Out of all the transfer learning models, the EfficientNetB0 model has outperformed with an accuracy of 0.91, followed by DenseNet169 with an accuracy of 0.90. In comparison to other approaches, the proposed intelligent recommendation-based fine-tuned EfficientNetB0 approach delivers state-of-the-art performance on the accuracy, recall, precision, and F1-score criteria. The system aims to assist ophthalmologists in early detection, potentially alleviating the burden on healthcare units.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3