Enhanced brain tumor classification using EfficientNetB0 and SVM with pareto search algorithm optimization

Author:

Djemai Mohamed,Kacem Omar,Naimi Hilal,Bourennane Mohammed,Elbar Mohamed

Abstract

Classifying tumors by type, grade, and stage is crucial for treatment decisions and predicting outcomes. Deep learning, especially Convolutional Neural Networks (CNNs), has significantly advanced tumor classification by effectively analyzing complex patterns in magnetic resonance (MR) images. This work presents a hybrid image classification method using the EfficientNetB0 model and Support Vector Machine (SVM) to categorize brain MR images into pituitary tumor, glioma tumor, meningioma tumor, and normal brain. EfficientNetB0 model extracts deep features from the images, which are then classified by a linear SVM. To significantly enhance classification accuracy for brain images, we use the Pareto algorithm to determine the penalty parameter C for the linear SVM. The testing results showed that the proposed system achieved a classification accuracy of 99.30%, recall of 99.30%, precision of 99.30%, and F1-score of 99.30%, with a high specificity of 99.77%. These results demonstrate that the combination of the Pareto algorithm and SVM significantly contributes to improved classification accuracy for brain images.

Publisher

South Florida Publishing LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3