What Does a Language-And-Vision Transformer See: The Impact of Semantic Information on Visual Representations

Author:

Ilinykh Nikolai,Dobnik Simon

Abstract

Neural networks have proven to be very successful in automatically capturing the composition of language and different structures across a range of multi-modal tasks. Thus, an important question to investigate is how neural networks learn and organise such structures. Numerous studies have examined the knowledge captured by language models (LSTMs, transformers) and vision architectures (CNNs, vision transformers) for respective uni-modal tasks. However, very few have explored what structures are acquired by multi-modal transformers where linguistic and visual features are combined. It is critical to understand the representations learned by each modality, their respective interplay, and the task’s effect on these representations in large-scale architectures. In this paper, we take a multi-modal transformer trained for image captioning and examine the structure of the self-attention patterns extracted from the visual stream. Our results indicate that the information about different relations between objects in the visual stream is hierarchical and varies from local to a global object-level understanding of the image. In particular, while visual representations in the first layers encode the knowledge of relations between semantically similar object detections, often constituting neighbouring objects, deeper layers expand their attention across more distant objects and learn global relations between them. We also show that globally attended objects in deeper layers can be linked with entities described in image descriptions, indicating a critical finding - the indirect effect of language on visual representations. In addition, we highlight how object-based input representations affect the structure of learned visual knowledge and guide the model towards more accurate image descriptions. A parallel question that we investigate is whether the insights from cognitive science echo the structure of representations that the current neural architecture learns. The proposed analysis of the inner workings of multi-modal transformers can be used to better understand and improve on such problems as pre-training of large-scale multi-modal architectures, multi-modal information fusion and probing of attention weights. In general, we contribute to the explainable multi-modal natural language processing and currently shallow understanding of how the input representations and the structure of the multi-modal transformer affect visual representations.

Funder

Vetenskapsrådet

Publisher

Frontiers Media SA

Reference68 articles.

1. Bottom-up and Top-Down Attention for Image Captioning and Visual Question Answering;Anderson,2018

2. Vqa: Visual Question Answering;Antol,2015

3. Analysis Methods in Neural Language Processing: A Survey;Belinkov;Trans. Assoc. Comput. Linguist.,2019

4. Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data;Bender,2020

5. Image Interpretation above and below the Object Level;Ben-Yosef;Interf. Focus,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying wear types based on Faster R-CNN network model;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3