Interpretable neural networks: principles and applications

Author:

Liu Zhuoyang,Xu Feng

Abstract

In recent years, with the rapid development of deep learning technology, great progress has been made in computer vision, image recognition, pattern recognition, and speech signal processing. However, due to the black-box nature of deep neural networks (DNNs), one cannot explain the parameters in the deep network and why it can perfectly perform the assigned tasks. The interpretability of neural networks has now become a research hotspot in the field of deep learning. It covers a wide range of topics in speech and text signal processing, image processing, differential equation solving, and other fields. There are subtle differences in the definition of interpretability in different fields. This paper divides interpretable neural network (INN) methods into the following two directions: model decomposition neural networks, and semantic INNs. The former mainly constructs an INN by converting the analytical model of a conventional method into different layers of neural networks and combining the interpretability of the conventional model-based method with the powerful learning capability of the neural network. This type of INNs is further classified into different subtypes depending on which type of models they are derived from, i.e., mathematical models, physical models, and other models. The second type is the interpretable network with visual semantic information for user understanding. Its basic idea is to use the visualization of the whole or partial network structure to assign semantic information to the network structure, which further includes convolutional layer output visualization, decision tree extraction, semantic graph, etc. This type of method mainly uses human visual logic to explain the structure of a black-box neural network. So it is a post-network-design method that tries to assign interpretability to a black-box network structure afterward, as opposed to the pre-network-design method of model-based INNs, which designs interpretable network structure beforehand. This paper reviews recent progress in these areas as well as various application scenarios of INNs and discusses existing problems and future development directions.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference87 articles.

1. X-tom: Explaining with theory-of-mind for gaining justified human trust;Akula;arXiv preprint arXiv:1909.06907,2019

2. A fast iterative shrinkage-thresholding algorithm for linear inverse problems;Beck;SIAM J. Imag. Sci,2009

3. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction;Belthangady;Nat. Methods,2019

4. Distributed optimization and statistical learning via the alternating direction method of multipliers;Boyd;Found. Trends Mach. Learn,2011

5. Discovering governing equations from data by sparse identification of nonlinear dynamical systems;Brunton;Proc. Natl. Acad. Sci,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3